일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- CNN
- LSTM
- keras
- pandas
- synology
- GT-S80
- mean
- RNN
- E-P1
- ipad
- SciPy
- dataframe
- Python
- install
- GitHub
- Numpy
- Splunk
- javascript
- 삼성소프트웨어멤버십
- pip
- mariadb
- SPL
- Button
- Series
- pycharm
- Lotto
- imread
- DFS
- index
- 알고리즘
- Today
- Total
목록CNN (8)
잠토의 잠망경
GITHUB https://github.com/yiwonjae/Project_Lotto/blob/master/Book_001/p119.py 0. 목표 [ 10 15 25] [ 20 25 45] [ 30 35 65] [ 40 45 85] [ 50 55 105] [ 60 65 125] [ 70 75 145] [ 80 85 165] [ 90 95 185] input [ 10 15 25] [ 20 25 45] [ 30 35 65] output [ 40 45 85] [ 50 55 105] 1. DATA in_seq1 = np.asarray([10, 20, 30, 40, 50, 60, 70, 80, 90]) in_seq2 = np.asarray([15, 25, 35, 45, 55, 65, 75, 85, 95]) o..
GITHUB https://github.com/yiwonjae/Project_Lotto/blob/master/Book_001/p113.py 0. 목표 input 多, output 多step 1. DATA in_seq1 = np.asarray([10, 20, 30, 40, 50, 60, 70, 80, 90]) in_seq2 = np.asarray([15, 25, 35, 45, 55, 65, 75, 85, 95]) out_seq = np.asarray([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))]) in_seq1:ndarray = in_seq1.reshape((len(in_seq1), 1)) in_seq2:ndarray = in_seq2.reshape((len..
GITHUB https://github.com/yiwonjae/Project_Lotto/blob/master/Book_001/p111.py 0. 목표 output이 여러단계를 원할 때 1. DATA raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90] 2. DATA 정제 X from numpy import ndarray import numpy as np def split_sequence(sequence:list, n_steps_in:int, n_steps_out:int)->(ndarray, ndarray): x = [] y = [] for i in range(len(sequence)): if(i+n_steps_in+n_steps_out > len(sequence)): bre..
GITHUB https://github.com/yiwonjae/Project_Lotto/blob/master/Book_001/p107.py 0. 목표 feature의 수에 맞추서 output을 산출하는 방법이다. 1. DATA in_seq1 = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90]) in_seq2 = np.array([15, 25, 35, 45, 55, 65, 75, 85, 95]) out_seq = np.array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))]) in_seq1 = in_seq1.reshape((len(in_seq1), 1)) in_seq2 = in_seq2.reshape((len(in_seq2)..
GITHUB https://github.com/yiwonjae/Project_Lotto/blob/master/Book_001/p104.py 0. 목표 이전 값들을 갖고 한단계 앞 값을 예측한다. 1. DATA in_seq1 = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90]) in_seq2 = np.array([15, 25, 35, 45, 55, 65, 75, 85, 95]) out_seq = np.array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))]) in_seq1 = in_seq1.reshape((len(in_seq1), 1)) in_seq2 = in_seq2.reshape((len(in_seq2), 1)) out_..
GITHUB https://github.com/yiwonjae/Project_Lotto/blob/master/Book_001/p100.py 0. 목표 이전 형태에서 model만 바꾼 것으로 input 값의 종류에 따라 layer를 변경한 것이다. 1. DATA # data sample in_seq1 = np.asarray([10, 20, 30, 40, 50, 60, 70, 80, 90]) in_seq2 = np.asarray([15, 25, 35, 45, 55, 65, 75, 85, 95]) out_seq = np.asarray([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))]) # sample용 의미 없음 in_seq1 = in_seq1.reshape((in..
GITHUB https://github.com/yiwonjae/Project_Lotto/blob/master/Book_001/p096.py 0. 목표 data가 두가지 종류가 있다. 현재 포함 과거 data 총 3단계를 바탕으로 예측되는 data를 산출한다. input data 10, 15 20, 25 30, 35 prediction data 65 1. DATA in_seq1 = np.asarray([10, 20, 30, 40, 50, 60, 70, 80, 90]) in_seq2 = np.asarray([15, 25, 35, 45, 55, 65, 75, 85, 95]) out_seq = np.asarray([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))]) i..
GITHUB https://github.com/yiwonjae/Project_Lotto/blob/master/Book_001/p091.py 0. 목표 연속된 하나의 sequcence에서 다음 하나의(univariate) 값을 예측한다. data : [10, 20, 30, 40, 50, 60, 70, 80, 90] x y 10 20 30 40 20 30 40 50 30 40 50 60 1. DATA raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90] n_steps = 3 2. DATA 정제 X def splite_sequence(sequence:list, n_steps:int)->(ndarray, ndarray): x, y = [], [] for i in range(len(..