일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- LSTM
- CNN
- ipad
- pycharm
- 알고리즘
- Numpy
- synology
- Python
- 삼성소프트웨어멤버십
- GT-S80
- index
- GitHub
- pandas
- mariadb
- Series
- E-P1
- SciPy
- RNN
- DFS
- Splunk
- javascript
- mean
- keras
- dataframe
- Button
- pip
- imread
- Lotto
- SPL
- install
Archives
- Today
- Total
잠토의 잠망경
[ML] CNN - Multiple Parallel Input and Multi-step Output 본문
GITHUB
https://github.com/yiwonjae/Project_Lotto/blob/master/Book_001/p119.py
0. 목표
[ 10 15 25]
[ 20 25 45]
[ 30 35 65]
[ 40 45 85]
[ 50 55 105]
[ 60 65 125]
[ 70 75 145]
[ 80 85 165]
[ 90 95 185]
input
[ 10 15 25]
[ 20 25 45]
[ 30 35 65]
output
[ 40 45 85]
[ 50 55 105]
1. DATA
in_seq1 = np.asarray([10, 20, 30, 40, 50, 60, 70, 80, 90])
in_seq2 = np.asarray([15, 25, 35, 45, 55, 65, 75, 85, 95])
out_seq = np.asarray([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])
in_seq1:ndarray = in_seq1.reshape((len(in_seq1), 1))
in_seq2:ndarray = in_seq2.reshape((len(in_seq2), 1))
out_seq:ndarray = out_seq.reshape((len(out_seq), 1))
dataset = np.hstack((in_seq1, in_seq2, out_seq))
2. DATA 정제
X
import numpy as np
from numpy import ndarray
def split_sequence(sequence:ndarray, n_steps_in:int, n_steps_out:int)->(ndarray, ndarray):
x=[]
y=[]
for i in range(len(sequence)):
if(i+n_steps_in+n_steps_out>len(sequence)):
break
x.append(sequence[i:i+n_steps_in, :])
y.append(sequence[i+n_steps_in:i+n_steps_in+n_steps_out, :])
return (np.asarray(x), np.asarray(y))
n_steps_in = 3
n_steps_out = 2
(x, y) = split_sequence(dataset, n_steps_in, n_steps_out)
print(x.shape)
print(y.shape)
n_output = y.shape[1]*y.shape[2]
y:ndarray = y.reshape((y.shape[0], n_output))
n_features = x.shape[2]
print(y.shape)
3. 학습
from keras import Sequential
from keras.layers import Dense, Flatten
from keras.layers.convolutional import Conv1D, MaxPooling1D
model = Sequential()
model.add(Conv1D(64, 2, activation='relu', input_shape=(n_steps_in, n_features)))
model.add(MaxPooling1D())
model.add(Flatten())
model.add(Dense(50, activation='relu'))
model.add(Dense(n_output))
model.compile(loss='mse', optimizer='adam')
model.fit(x, y, epochs=2000, verbose=1)
4. 표시
x_input = np.asarray([[60, 65, 125], [70, 75, 145], [80,85,165]]) # expect [90, 95, 185], [100, 105, 205]
x_input = x_input.reshape(1, n_steps_in, n_features)
yhat = model.predict(x_input, verbose=1)
print(yhat) # [[ 90.66462 96.08125 186.5697 101.55215 106.85993 208.24315]]
Comments