일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- CNN
- SPL
- index
- GT-S80
- pandas
- Numpy
- Python
- keras
- pip
- 삼성소프트웨어멤버십
- Button
- SciPy
- RNN
- mean
- dataframe
- Series
- ipad
- install
- LSTM
- Lotto
- Splunk
- synology
- DFS
- 알고리즘
- GitHub
- E-P1
- mariadb
- pycharm
- imread
- javascript
Archives
- Today
- Total
잠토의 잠망경
[ML] Univariate CNN Models 본문
GITHUB
https://github.com/yiwonjae/Project_Lotto/blob/master/Book_001/p091.py
0. 목표
연속된 하나의 sequcence에서 다음 하나의(univariate) 값을 예측한다.
data : [10, 20, 30, 40, 50, 60, 70, 80, 90]
x | y | |||
10 | 20 | 30 | 40 | |
20 | 30 | 40 | 50 | |
30 | 40 | 50 | 60 |
1. DATA
raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90]
n_steps = 3
2. DATA 정제
X
def splite_sequence(sequence:list, n_steps:int)->(ndarray, ndarray):
x, y = [], []
for i in range(len(sequence)):
if(i+n_steps >= len(sequence)):
break
x.append(sequence[i:i+n_steps])
y.append(sequence[i+n_steps])
return (np.asarray(x), np.asarray(y))
(x, y) = splite_sequence(raw_seq, n_steps)
#reshape from [samples, timesteps] to [sample, timesteps, features]
n_feature = 1 # kind수
x = x.reshape((x.shape[0], x.shape[1], n_feature))
Y
3. 학습
from keras import Sequential
from keras.layers import Dense, Conv1D, MaxPool1D, Flatten
model = Sequential()
model.add(Conv1D(64, 2, activation='relu', input_shape=(n_steps, n_feature)))
model.add(MaxPool1D())
model.add(Flatten())
model.add(Dense(50, activation='relu'))
model.add(Dense(1))
model.compile(loss='mse', optimizer='adam')
model.fit(x, y, epochs=1000, verbose=1)
4. 표시
x_input = np.array([70, 80, 90])
x_input = x_input.reshape((1, n_steps, n_feature))
yhat = model.predict(x_input)
print(yhat)
Comments