일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- keras
- index
- mean
- javascript
- DFS
- SPL
- dataframe
- pycharm
- Python
- Numpy
- Series
- mariadb
- 삼성소프트웨어멤버십
- install
- Lotto
- ipad
- LSTM
- 알고리즘
- E-P1
- SciPy
- imread
- GT-S80
- GitHub
- Button
- Splunk
- CNN
- RNN
- pip
- pandas
- synology
- Today
- Total
목록공부/Python (70)
잠토의 잠망경
지정된 위치의 File List를 읽기위한 방법 Github https://github.com/yiwonjae/Project_Python_Lib/blob/master/Files/Directorys.py import glob ''' 목적: 원하는 폴더에 있는 file 이름을 찾아서 return한다. i ) path : 폴더 및 파일 이름, *.txt, *.* 사용 가능 o ) list : file 이름 list ''' def findFiles(path:str)->list: fileList = glob.glob(path) print(fileList) return fileList if __name__ == '__main__': path = "../datas/sincontan*.txt" files = findF..
http://jakevdp.github.io/blog/2013/12/19/a-d3-viewer-for-matplotlib/ A D3 Viewer for Matplotlib Visualizations | Pythonic Perambulations Conclusion¶ As I mentioned above, there is still a lot to be done to make this a truly useful tool for data exploration: right now, the list of usupported features alone likely dwarfs the size of the current code base! But as a proof-of-concept, I think th jake..
GITHUB https://github.com/yiwonjae/Project_Lotto/blob/master/Book_001/p130.py 0. 목표 ''' data [10, 20, 30, 40, 50, 60, 70, 80, 90] X(input), y(output) 10, 20, 30, 40 20, 30, 40, 50 30, 40, 50, 60 ''' 1. DATA raw_seq = np.asarray([10, 20, 30, 40, 50, 60, 70, 80, 90]) 2. DATA 정제 X import numpy as np from numpy import ndarray def split_sequence(sequence:ndarray, n_steps:int)->(ndarray, ndarray): x =..
GITHUB https://github.com/yiwonjae/Project_Lotto/blob/master/Book_001/p128.py 0. 목표 ''' data [10, 20, 30, 40, 50, 60, 70, 80, 90] X(input), y(output) 10, 20, 30, 40 20, 30, 40, 50 30, 40, 50, 60 ''' 1. DATA raw_seq = np.asarray([10, 20, 30, 40, 50, 60, 70, 80, 90]) 2. DATA 정제 X import numpy as np from numpy import ndarray def split_sequence(sequence:ndarray, n_steps:int)->(ndarray, ndarray): x =..
GITHUB https://github.com/yiwonjae/Project_Lotto/blob/master/Book_001/p127_LSTM.py 0. 목표 ''' data [10, 20, 30, 40, 50, 60, 70, 80, 90] X(input), y(output) 10, 20, 30, 40 20, 30, 40, 50 30, 40, 50, 60 ''' 1. DATA raw_seq = np.asarray([10, 20, 30, 40, 50, 60, 70, 80, 90]) 2. DATA 정제 X import numpy as np from numpy import ndarray def split_sequence(sequence:ndarray, n_steps:int)->(ndarray, ndarray)..
GITHUB https://github.com/yiwonjae/Project_Lotto/blob/master/Book_001/p119.py 0. 목표 [ 10 15 25] [ 20 25 45] [ 30 35 65] [ 40 45 85] [ 50 55 105] [ 60 65 125] [ 70 75 145] [ 80 85 165] [ 90 95 185] input [ 10 15 25] [ 20 25 45] [ 30 35 65] output [ 40 45 85] [ 50 55 105] 1. DATA in_seq1 = np.asarray([10, 20, 30, 40, 50, 60, 70, 80, 90]) in_seq2 = np.asarray([15, 25, 35, 45, 55, 65, 75, 85, 95]) o..

GITHUB https://github.com/yiwonjae/Project_Lotto/blob/master/Book_001/p113.py 0. 목표 input 多, output 多step 1. DATA in_seq1 = np.asarray([10, 20, 30, 40, 50, 60, 70, 80, 90]) in_seq2 = np.asarray([15, 25, 35, 45, 55, 65, 75, 85, 95]) out_seq = np.asarray([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))]) in_seq1:ndarray = in_seq1.reshape((len(in_seq1), 1)) in_seq2:ndarray = in_seq2.reshape((len..
GITHUB https://github.com/yiwonjae/Project_Lotto/blob/master/Book_001/p111.py 0. 목표 output이 여러단계를 원할 때 1. DATA raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90] 2. DATA 정제 X from numpy import ndarray import numpy as np def split_sequence(sequence:list, n_steps_in:int, n_steps_out:int)->(ndarray, ndarray): x = [] y = [] for i in range(len(sequence)): if(i+n_steps_in+n_steps_out > len(sequence)): bre..