일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- mariadb
- pycharm
- Python
- SPL
- 삼성소프트웨어멤버십
- Numpy
- imread
- mean
- LSTM
- synology
- keras
- GT-S80
- RNN
- 알고리즘
- dataframe
- CNN
- javascript
- pandas
- Splunk
- Button
- Series
- SciPy
- DFS
- E-P1
- pip
- index
- GitHub
- ipad
- install
- Lotto
- Today
- Total
목록univariate (2)
잠토의 잠망경
GITHUB https://github.com/yiwonjae/Project_Lotto/blob/master/Book_001/p127_LSTM.py 0. 목표 ''' data [10, 20, 30, 40, 50, 60, 70, 80, 90] X(input), y(output) 10, 20, 30, 40 20, 30, 40, 50 30, 40, 50, 60 ''' 1. DATA raw_seq = np.asarray([10, 20, 30, 40, 50, 60, 70, 80, 90]) 2. DATA 정제 X import numpy as np from numpy import ndarray def split_sequence(sequence:ndarray, n_steps:int)->(ndarray, ndarray)..
GITHUB https://github.com/yiwonjae/Project_Lotto/blob/master/Book_001/p091.py 0. 목표 연속된 하나의 sequcence에서 다음 하나의(univariate) 값을 예측한다. data : [10, 20, 30, 40, 50, 60, 70, 80, 90] x y 10 20 30 40 20 30 40 50 30 40 50 60 1. DATA raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90] n_steps = 3 2. DATA 정제 X def splite_sequence(sequence:list, n_steps:int)->(ndarray, ndarray): x, y = [], [] for i in range(len(..