일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
Tags
- dataframe
- index
- RNN
- mean
- keras
- GitHub
- GT-S80
- CNN
- imread
- ipad
- Splunk
- Numpy
- javascript
- 알고리즘
- DFS
- pip
- mariadb
- install
- Python
- E-P1
- Series
- SPL
- pycharm
- SciPy
- LSTM
- synology
- 삼성소프트웨어멤버십
- Button
- Lotto
- pandas
Archives
- Today
- Total
잠토의 잠망경
[python] 공분산이란? cov 본문
summary
print('-'*100)
print(sp.cov(x, y, ddof=0))
print(sp.cov(x, y, ddof=1))
공분산
과소하는 경우 N으로 나눠져있다.
cov_sample = sum((x-mu_x)*(y-mu_y))/N
print('{0:.3f}'.format(cov_sample)) #6.906
공분산
과소하는 경우 해결 N-1을 곱함
cov = sum((x-mu_x)*(y-mu_y))/(N-1)
print('{0:.3f}'.format(cov)) # 7.673
full code
from pandas import DataFrame
import pandas as pd
import scipy as sp
import numpy as np
datas:DataFrame = pd.DataFrame({'x':[18.5,18.7,19.1,19.7,21.5,21.7,21.8,22.0,23.4,23.8],
'y':[34, 39, 41, 38, 45, 41, 52, 44, 44, 49]})
print(datas.info())
print(datas.describe())
print(datas)
x = datas['x']
y = datas['y']
print(x)
print(y)
N = len(datas)
mu_x = sp.mean(x)
mu_y = sp.mean(y)
print(mu_x)
print(mu_y)
cov_sample = sum((x-mu_x)*(y-mu_y))/N
print('{0:.3f}'.format(cov_sample))
cov = sum((x-mu_x)*(y-mu_y))/(N-1)
print('{0:.3f}'.format(cov))
분산-공분산 행렬
snippets
print('-'*100)
print(sp.cov(x, y, ddof=0))
print(sp.cov(x, y, ddof=1))
출력 결과
아래와 같이 분산-공분산 행렬을 얻을 수 있다.
[[ 3.2816 6.906 ]
[ 6.906 25.21 ]]
[[ 3.64622222 7.67333333]
[ 7.67333333 28.01111111]]
full code
from pandas import DataFrame
import pandas as pd
import scipy as sp
import numpy as np
datas:DataFrame = pd.DataFrame({'x':[18.5,18.7,19.1,19.7,21.5,21.7,21.8,22.0,23.4,23.8],
'y':[34, 39, 41, 38, 45, 41, 52, 44, 44, 49]})
print(datas.info())
print(datas.describe())
print(datas)
x = datas['x']
y = datas['y']
print(x)
print(y)
N = len(datas)
mu_x = sp.mean(x)
mu_y = sp.mean(y)
print(mu_x)
print(mu_y)
cov_sample = sum((x-mu_x)*(y-mu_y))/N
print('{0:.3f}'.format(cov_sample))
cov = sum((x-mu_x)*(y-mu_y))/(N-1)
print('{0:.3f}'.format(cov))
print('-'*100)
print(sp.cov(x, y, ddof=0))
print(sp.cov(x, y, ddof=1))
Comments