일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- pycharm
- CNN
- Button
- Python
- pip
- pandas
- mariadb
- index
- SciPy
- Series
- E-P1
- RNN
- DFS
- dataframe
- SPL
- keras
- synology
- imread
- ipad
- Splunk
- GT-S80
- GitHub
- Numpy
- mean
- install
- 알고리즘
- javascript
- Lotto
- LSTM
- 삼성소프트웨어멤버십
Archives
- Today
- Total
잠토의 잠망경
[ML] Multiple Parallel Series 본문
GITHUB
https://github.com/yiwonjae/Project_Lotto/blob/master/Book_001/p104.py
0. 목표
이전 값들을 갖고 한단계 앞 값을 예측한다.
1. DATA
in_seq1 = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90])
in_seq2 = np.array([15, 25, 35, 45, 55, 65, 75, 85, 95])
out_seq = np.array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])
in_seq1 = in_seq1.reshape((len(in_seq1), 1))
in_seq2 = in_seq2.reshape((len(in_seq2), 1))
out_seq = out_seq.reshape((len(out_seq), 1))
dataset = np.hstack((in_seq1, in_seq2, out_seq))
2. DATA 정제
X
import numpy as np
from numpy import ndarray
def split_sequence(sequence:ndarray, n_stpes:int)->(ndarray, ndarray):
x, y =[], []
for i in range(len(sequence)):
if(i+n_steps>= len(sequence)):
break
x.append(sequence[i:i+n_steps,:])
y.append(sequence[i+n_steps,:])
return (np.asarray(x), np.asarray(y))
n_steps = 3
x, y = split_sequence(dataset, n_steps)
n_feature = x.shape[2]
Y
3. 학습
from keras import Sequential
from keras.layers import Dense, Conv1D, MaxPool1D, Flatten
model = Sequential()
model.add(Conv1D(64, 2, activation='relu', input_shape=(n_steps, n_feature)))
model.add(MaxPool1D())
model.add(Flatten())
model.add(Dense(50, activation='relu'))
model.add(Dense(n_feature))
model.compile(loss='mse', optimizer='adam')
model.fit(x, y, epochs=200, verbose=1)
4. 표시
x_input = np.array([[70,75,145], [80,85,165], [90,95,185]]) # 기대 값: 100, 105, 205
x_input = x_input.reshape((1, n_steps, n_feature))
yhat = model.predict(x_input, verbose=0)
print(yhat) # [[104.76112 112.68031 217.38632]]
Comments