일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- 알고리즘
- dataframe
- SPL
- DFS
- CNN
- mean
- 삼성소프트웨어멤버십
- keras
- ipad
- pip
- Lotto
- Button
- Series
- pycharm
- index
- Splunk
- E-P1
- GT-S80
- install
- mariadb
- Python
- RNN
- pandas
- Numpy
- LSTM
- SciPy
- imread
- javascript
- synology
- GitHub
- Today
- Total
목록sequence (2)
잠토의 잠망경
GITHUB https://github.com/yiwonjae/Project_Lotto/blob/master/Book_001/p111.py 0. 목표 output이 여러단계를 원할 때 1. DATA raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90] 2. DATA 정제 X from numpy import ndarray import numpy as np def split_sequence(sequence:list, n_steps_in:int, n_steps_out:int)->(ndarray, ndarray): x = [] y = [] for i in range(len(sequence)): if(i+n_steps_in+n_steps_out > len(sequence)): bre..

GITHUB https://github.com/yiwonjae/Project_Lotto/blob/master/Book_001/p107.py 0. 목표 feature의 수에 맞추서 output을 산출하는 방법이다. 1. DATA in_seq1 = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90]) in_seq2 = np.array([15, 25, 35, 45, 55, 65, 75, 85, 95]) out_seq = np.array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))]) in_seq1 = in_seq1.reshape((len(in_seq1), 1)) in_seq2 = in_seq2.reshape((len(in_seq2)..